The selector gene cut represses a neural cell fate that is specified independently of the Achaete-Scute-Complex and atonal

نویسندگان

  • Rachel Brewster
  • Kirsten Hardiman
  • Monika Deo
  • Shaema Khan
  • Rolf Bodmer
چکیده

The peripheral nervous system (PNS) of Drosophila offers a powerful system to precisely identify individual cells and dissect their genetic pathways of development. The mode of specification of a subset of larval PNS cells, the multiple dendritic (md) neurons (or type II neurons), is complex and still poorly understood. Within the dorsal thoracic and abdominal segments, two md neurons, dbd and dda1, apparently require the proneural gene amos but not atonal (ato) or Achaete-Scute-Complex (ASC) genes. ASC normally acts via the neural selector gene cut to specify appropriate sensory organ identities. Here, we show that dbd- and dda1-type differentiation is suppressed by cut in dorsal ASC-dependent md neurons. Thus, cut is not only required to promote an ASC-dependent mode of differentiation, but also represses an ASC- and ato-independent fate that leads to dbd and dda1 differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The specificity of proneural genes in determining Drosophila sense organ identity

The proneural genes (atonal and the genes of the achaete-scute complex (AS-C)) are required for the selection of sense organ precursors. They also endow these precursors with sense organ subtype information. In most of the ectoderm, atonal is required for precursors of chordotonal sense organs, whereas AS-C are required for those of most external sense organs, such as bristles. To address the q...

متن کامل

The achaete–scute complex proneural genes contribute to neural precursor specification in the Drosophila CNS

BACKGROUND The Drosophila central nervous system (CNS) develops from a segmentally reiterated array of 30 neural precursors. Each precursor acquires a unique identity and goes through a stereotyped cell lineage to produce an invariant family of neurons and/or glia. The proneural genes achaete, scute and lethal of scute are required for neural precursor formation in the Drosophila CNS, and are e...

متن کامل

asense is a Drosophila neural precursor gene and is capable of initiating sense organ formation.

Neural precursor cells in Drosophila arise from the ectoderm in the embryo and from imaginal disc epithelia in the larva. In both cases, this process requires daughterless and the proneural genes achaete, scute and lethal-of-scute of the achaete-scute complex. These genes encode basic helix-loop-helix proteins, which are nuclear transcription factors, as does the asense gene of the achaete-scut...

متن کامل

The achaete-scute complex: generation of cellular pattern and fate within the Drosophila nervous system.

In developing embryos, cells receive and interpret positional information as they become organized into discrete patterns and structures. One excellent model for understanding the genetic regulatory mechanisms that pattern cellular fields is the regulation and function of the achaete-scute complex (AS-C) in the developing nervous system of the fruit fly, Drosophila melanogaster. Three structura...

متن کامل

The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development.

The achaete-scute gene complex (AS-C) contains four genes encoding transcription factors of the bHLH family, achaete, scute, lethal of scute, and asense located in 40 kb of DNA containing multiple cis-regulatory position-specific enhancers. These genes play a key role in the commitment of epidermal cells toward a neural fate, promoting the formation of both sensory organs in the peripheral nerv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2001